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The time characteristics of a linear network in the brain are obtained by the 
method of the "time partition function," which is analogous to a grand 
partition function or a distribution function in statistical mechanics. The 
analogy between the average density in a many-particle system and the 
reciprocal of the frequency in a network is shown. By this method, the 
frequency distribution functions are obtained with respect to a network 
composed of two layers, the network used in information retrieval and the 
network generating a brain wave. 
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1. I N T R O D U C T I O N  

One method  o f  s tudying in format ion  processing in neural  ne tworks  is 

by neural  dynamics ,  in which the mot ion  o f  signals is descr ibed by var ious  
types o f  neuronic  equat ions.  One o f  these, the digi tal  equat ion ,  describes the 
t ime deve lopmen t  o f  the exci ta t ion states o f  cell bodies  by terms which take 
the value one or  zero accord ing  to whether  the cell body  is excit ing or  not. 
The  osc i l la tory  behavior  o f  neural  ne tworks  has been analyzed in terms o f  
such equat ions .  

The  rhy thmic  exci ta t ion o f  neurons  is connected with the behavior  o f  
animals ;  for  instance, the osci l la t ion o f  a neuron  r ing was regarded as a 
model  for a starfish in a s tudy by means  o f  compu te r  s imulat ion.  Ix) 
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The long-lived oscillation of a neuronal excitation--the so-called rever- 
beration arising when a stimulus is given to one or more cell bodies--is 
found in the network of an isolated cortical slab <z) and in the circuit between 
the nucleus of the cerebellum and pons. ~3) On the other hand, networks 
undergoing reverberations can be studied in terms of neuronic equations; 
it has been shown, by means of  computer simulation, <~ that reverberation 
occurs in networks with random coupling constants. 

The study of  oscillatory behavior in networks should prove to play an 
important role in increasing understanding of certain physiological pheno- 
mena whose exact mechanisms have not yet been confirmed in detail. A 
brain wave is one such phenomenon. The network generating a brain wave is 
considered to be in the thalamus or neocortex. However, there have been 
few studies of  the neurodynamical aspects of brain waves. Network models 
able to account for the difference in the frequency of an electroencephalo- 
gram for awake and sleep states should also be able to give information of a 
general nature on interneuronal coupling. 

Another physiological phenomenon of interest here is the maintcnance 
of memory. Some have proposed the idea that reverberation is involved in 
the process of fixing memory. (~.G~ Oscillation, including reverberation, will 
take place by the circulation of an excitation through closed circuits in a net- 
work. This relation between circulation and oscillation is the fundamental idea 
to be used here in developing the new method of analyzing oscillations, even 
if the network is too complex to be separated into individual closed circuits. 

The localization of oscillation or the possibility of localized oscillation 
by stimulus is proposed as a model of memory; in a network where the 
coupling constants take values of one or minus one at random in space, 
localized oscillation has been studied using a linear differential equation by 
means of computer simulation. 

Oscillations in neural networks arc observed in othcr region besides the 
brain; for instance, the oscillatory motion of the intestine is due to the 
oscillation of the excitation of cell bodies in the network. 

In the study of oscillation in terms of a digital equation, it needs to be 
taken into account that noise usually exists in a neural network. Therefore, a 
stochastic equation is used in the theoretical analysis. The equation for the 
averaged excitation is called the analog equation in the sense that the output 
excitation is a continuous function of the input stimulus. An analog neuronic 
equation is described in general by the form 

Si(t 
J 

where S~(t) is the excitation probability of the ith cell body at time t, such as 
a pulse frequency or the ensemble average of  the state of the cell body. The 
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nonlinear function h ( x )  is a monotonic function with respect to x, which 
theoretical neurologists often approximate by the hyperbolic tangent of  x. 
Equation (1) was found from electrophysiological experiments. Its theoretical 
derivation from a digital equation has been carried out in the case where S ( t )  

is an averaged pulse frequency when the stimuli are stationary, and when the 
stimuli vary with time in the form A e  -~* i- B.  ~7~' 3 

Under the assumption that the excitation probability is not too large, 
the analog neuronic equation is approximated by the linear form 

S / ( t  + ~It) -- ~ a : j S / ( t  - -  r:j)  (2) 
J 

where S~'(t)  = S i ( t )  - ~ ,  E~ being the component of  the column vector c 
derived from the unit matrix E, the matrix A with components a,:s, and the 
column vector of  components ),~ : 

c =: ( E - - A )  -~v  

Equation (2) shows that the signal of  value S'  is transmitted from the j th 
cell body to the ith cell body at the transmission rate a~: and that the trans- 
mission time is z;j --  /It. The time development of  a neural network described 
by the difference equation is usually obtained by finding the eigenvalues of  
the matrix A. 

In the present article, the author proposes a new method of analyzing 
the time characteristics of a network, without calculating the eigenvalues in 
terms of usual matrix algebra. The method is "time partition analysis," and 
is often useful for arriving at a knowledge of the frequency distribution and 
the localization of an oscillation; here, the conclusions of  the analysis of  
many-particle systems in terms of the energy partition function developed in 
statistical mechanics and of the distribution function method applied to 
high-polymer physics are applied to neural network analysis. 

2. TIME P A R T I T I O N  F U N C T I O N  IN A N E T W O R K  

A network is composed of closed circuits which start from the cell body 
under consideration (which we call the starting point), pass through other cell 
bodies, and return to the starting point. We number these circuits and 
suppose that the transmission rate and the time of  circulation in the ith 
circuit are g~ and ~-~, respectively, and we denote the closed circuit ( g~, ~'i). 

3 In the case where S(t) is an ensemble average of the excitation states of neurons, the 
derivation of Eq. (1) has been carried out for the nonstationary input stimulus by the 
present author and it has been shown that ai~ is the coupling constant in a digital cquation 
divided by the threshold value of a neuron, which plays a role similar to temperature with 
the dynamical equation of an lsing spin system. 
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Under the assumption that at the initial time t == 0, the excitation 
probability of  a starting point is a detinite value and the excitation proba- 
bilities of  the other cell bodies are zero, the excitation probability of  the 
starting point at time t is the sum of the excitation probabilities for a variety 
of  circulations: The excitation probability after passing through the ith circuit 
(i = 1, 2 ..... N) a total of  n~ times is multiplied by l'-I~ 1 g~" and the number 

�9 �9 . N T ?q_ ~ " �9 of ways for such a circulation is ( ~  z ni)./l-Ii-1 n~.. The excitation pro- 
bability of  the starting point at time t, therefore, is obtained from 

: y 
{ , q }  - 

where the summation Y~/~,,I represents the sum of all the combinations of  
n~ (i =- 1, 2 ..... N) under the condition that 

N 

nFri -= t (4) 
i = 1  

We define the average time of circulation through the whole network 

<,> ~ ,~,T~ y.  n~ (5) 
i = 1  - - i .  ,1  

from Eq. (4), this being rewritten as 

N 

t =  Z ,7,<~> (6) 
i = l  

Let t and (~-> be constant, i.e., from Eqs. (4) and (6), Z~'~I (T~- (r>) 3n~ = 0 
and by Lagrange's method, we obtain the most dominant excitation pro- 
bability as follows: 

where 

Sin(t) =: S(0) e ~'t~')t (7) 

~,(:~) - :  x %- (1/<r(cQ>)In ~(c~) (8) 

N 

~(cO --- ~', gie-~"' (9) 
i = l  

and a is determined so as to satisfy 

&-> --  <T(a)> = - e [ l n  3(,~)l/e~ (10) 

The geometrical expression of Eqs. (8) and (10) is the following: At an 
arbitrary value of ~, the absolute value of the gradient of a tangent of  In 3(,~) 
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is the average circulation time and the value of the intersection of the tangent 
and the a axis is Y0~)- 

With a knowledge of 3(a)  and by calculating ~r(~)~ and y(~) fi'om 
Eqs. (7) and (8), we can lind the time characteristics of a starting point as 
follows: The excitation probability of a starting point is the wave given as 
the sum of oscillations with frequencies I / ( r (a))  and amplitudes e~ (~)t. We 
therefore picture the modified frequency distribution function y versus 1/{r);  
y has a maximum value at the frequency 1/(r~ determined by a of~(~)  = 1, 
because 2(~) is a decreasing function of  a. 

3. A N A L O G Y  T O  T H E  D I S T R I B U T I O N  
O F  A P O L Y H E R  C H A I N  

In high-polymer physics, G~-(r, r') represents the distribution function 
of a high-polymer chain of length N which takes various conformations 
with one end at point r and the other at point r'. 

The distribution function GN(r, r) is analogous to the contribution to 
the time partition function of  a variety of closed circuits which start from 
the cell body at point r and return to it after passing through the arbitrary 
N -- 2 cell bodies. 

We consider a network where the two nearest-neighboring cell bodies 
are connected by a fiber of length a. In analogy to the distribution function of 
a high-polymer chain composed of  N molecules of equal size a, the contribu- 
tion to the time partition function GN(r, r) [hereafter we write Gu(r)] in the 
network is expressed as 

Ga(r) :- [exp - f i e ( r ) ]  f f ( r  -- r') exp --fir dr' (11) 

and, for N ) 4, 

GN(r) = f ' " f f ( r  - -  r O f < r ,  - -  r~) " " f ( r u _ 2  .... r)  

X cxp - - f i [ r  -F r  . . . . .  I- r d r l  dr., .-. d r N - 2  (12) 

where 

f ( r )  - (1/47ra 2) ~(i r l -- a) (13) 

and, with r corresponding to the potential energy at point r in a high- 
polymer chain, we define for a network 

exp --fi@r) ~ g(r) exp -- ~r(r) (14) 

under the supposition that the transmission rate and time from the cell body 
at r to the one at r + R (i R I := a) are given by g(r), independently of the 
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direction of  R, and ~(r), respectively. The time parti t ion function is obtained 
from 

S(r)  = i GN(r) (15) 
N = 3  

The calculation of  the distribution function (12) has been carried out  by 
various methods.  In this article, we try to calculate (12) in terms of  the 
differential equation. From Eq. (12), we obtain 

Gul l ( r )  = ff(r - s)[exp -.~4~(r)] Gu(s, r) ds 

= [exp --~xq~(r)]{GN(r) --[- ~-a 2 V,)G~-(r) -I . . . .  } (16) 

and, for  small a, Gu+l(r) is approximated as 

GN~_I(r) = [exp --a~(r)]{Gu(r)  -- ~a" Vr2GN(r)} 

From Eqs. (1 l) .(16),  we have 

[--~a 2 Vr~ + V(r)] S(r )  =- Q(r) (17) 

V(r) --  g-a(r)[exp ~z(r)] - 1 (18) 

and 

1 - 1 
Q(r) =, ~ a  ~ j ~(i R '  --  a) 1 + V(r  -'.- R) dR (19) 

When V has spherical symmetry,  let O(r) be the solution of  the equation 

[--  �89 2 Vr  z + V(r)] 0(r) = 0 (20) 

and we obtain 

j" II/0(, .yl .  - "  V(x) e-2~(~)O(x) dx + Cii dr Co6(r) (21) 

The arbi t rary  coetficients Cj and C2 are decided from the condit ion that in 
the power-series expansion of  S ( r )  with respect to e ~'~*~, the constant term 
and the linear term of  e -~'Cr~ are zero. 

For  instance, in the case where ~'(r) = ? and g(r) = g, we obtain 

~(r )  = (ge-~')'Z/(l - -  ge  -~')  

The modified frequency distribution is shown in Fig. 1. 
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[/ 
Fig. 1. Modified frequency distribution 
function. The transmission rate and time 
between nearest neighbors are g and -r, 
respectively. 
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4. D I S C R E T E  F R E Q U E N C Y  D I S T R I B U T I O N  

The frequency distribution of a network is discrete if the differential of  
the time partion function is discontinuous. In this section, we discuss the 
discrete frequency distribution of a network, comparing the time partition 
function with the partition function in the statistical mechanics of  a many- 
particle system. 

In a many-particle system when the energy E~ of the particle configuration 
of the ith state, the fugacity z, and the number of  particles n; are given, the 
grand partition function and the average density are obtained as ~8~ 

3 ( z )  :-~ ~ e-'~E~z ' '  and p -~ z(O/az)111 2(z) 
i 

where ~ is the reciprocal of  the temperature multiplied by Boltzmann's 
constant. Then, from the identification of --n~ In z and --~Ei  with ,~'i and 
In ,~ ,  respectively, the time partition function and the average circulation 
time correspond to the grand partition function and the average density, 
respectively. 

The occurrence of a phase transition at a point of  discontinuity of  the 
differential of  3(z) with respect to z is compared with the fact that the fre- 
quency distribution has a gap in the frequency at the point of the differential 
discontinuity o f~(~)  with respect to ~. Therefore, we can use the conclusions 
of  a grand partition function analysis for the analysis of  the frequency 
distribution in a network. 

For example, we refer to the calculation of a grand partition function in 
a one-dimensional lattice system with l sites ~9~ where the nearest-neighbor 
interaction u~ is extremely repulsive and the potential tt, 2 between the second 



|26 M a k o t o  O o n u k i  

neighbors is attractive if, and only if, there exists a particle between them 
such that 

6~x ~ exp(--  ~fiu,) 

~ 0  

6~ ~: exp(--~flu, - -  ~fiu2) 

> 0 .  

In this system, the grand parti t ion function is calculated as 

: : p~ e-'3E) Z N 

N=0 N 

l 

E H r~ 1Pi'v2Pi IPiI'~'P~P~"I Pt 
--" ~Z  - ~ 2  - " 6) 1 ' Z 

{Pi} i=1 

where P~ takes the value one or zero according to whether there is or is not  a 
particle at the ith site. Of  the variety of  sequences {P~}, e -t3L" diminishes for  
those sequences containing the isolated pair of  particles, and the contr ibut ion 
of  such a sequence of  N particles having n isolated particles and cluster of  
nk' particles is not  zero and is given by 

e-~ez N = (N! /n!  k!)(1 �9 z) n {~l'~(,d~."~,~z) "1'-2 z "V} 

x {exz(Eze,Y~) "2,-z z "2'} "-" {6;2(#12&~) " ; -2  z "d} (22) 

where 

Fig. 2. 

n " n i ' - - n 2 ' +  . . . .  . n k ' - -  N 

, , ' " - ' , ,  r, 

Network model with discrete frequencies. The direction of 
signal transmission is indicated by the arrows. 
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(b) 

Fig. 3. Network model with discrete frequencies. The direction of  signal transmission is 
indicated by the azrows. Network (a) is topologicaly equivalent to network (b). 

and 

hi' >~ 3, i ----- 1, 2,..., k 

in a network, Eq. (22) represents the contribution of  circulation through 
such closed circuits as (1, --[1/~] n In z), (6"1~[~12d'22]'~ -2, --[1/~] 171' In z), 
(d:12[~gz2C22]",~ -2 -- [1/,~] n2' In z),..., which are realized in such networks as 
those illustrated in Fig. 2 or Fig. 3, which are explained in the appendix. The 
grand partition function of the system for large l is obtained as 

= Amax (23) ~(z) 

h=/Z 

Fig. 4. Variation of  A with z; heie, K - d'~-~ '-', 
zc = (K + 1)'K2. r 
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I o 
U: ~c 

Fig. 5. Modified distr ibution funct ion with frequency 
gap;  here, K = e~le~; 2, "re ~- /zi'(K + 2). The  value o f  ~'~ 
decreases as g increases. 

where/~max is the maximum value of A, which varies with z as shown in Fig. 4. 
The system undergoes a phase transition at the point z = zc. Using this 
conclusion and supposing that - - ( l /a )  In z does not depend on n, n~', n.,',... 
and is equal to the unit time ~-, we can obtain the average of a period of 
circulation as 

( r )  = ~-z ~[ln 3(z)]/~z (24) 

The frequency distribution function is illustrated in Fig. 5. The frequency 
distribution has a gap. 

5. S U M M A R Y  A N D  D I S C U S S I O N  

The partition function method was applied to the analysis of the time 
characteristics of  a network in the brain under the condition that the pro- 
bability of excitation is transmitted in a network in a linear form. When the 
excitation probability increases, the condition of linearity does not hold, 
because the output excitation probability will saturate for a large value of 
input excitation probability. The transmission rates g, (i = 1, 2,...) become 
small for a large excitation, as shown in Fig. 6, the excitation probability 
approaching the equilibrium at the g, which makes the maximum value of 
7(a) zero for c~ such that 5(~) = 1. When the excitation probability decreases 
for a constant value of g i ,  the condition of linearity holds as long as the 
excitation probability is not extremely small, and then, as the transmission 
rates become small, the excitation probability decreases more rapidly. 

The examples given in the present paper suggest the general types of 
networks in the brain. The example mentioned in Section 3 is a homogeneous 
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Fig. 6. 

\ 
Transmission rate g versus input stimulus S. The input-output relation is assumed 
to be Sour ~ tanh(/3S). The transmission rate is dcfined by g ~ dSout . 'dS.  

network where the nearest-neighbor cell bodies are connected by the trans- 
mission rate g (this is referred to as model I). The transmission rate is a func- 
tion of the threshold of a cell body and will be inversely proportional to the 
threshold. As shown in Fig. 1, the frequency of the most dominant oscillation 
becomes high when the threshold becomes large--this can be regarded as the 
general property of a network with excitatory connections. As the large- 
scale networks in the brain, we consider the network where a b o d y / ' i  with 
excitatory connections g between the cell bodies in it gives rise to an inhibitory 
effect through the inhibitory cell bodies to the nearest-neighbor bodies 
F~- ( j  #-- i, j - 1, 2,...) in addition to an excitatory effect through the excita- 
tory connection (this is referred to as model 11). For large g, the F; are excited 
and the nearest-neighbor bodies Fj are inhibited as shown in Fig. 7, and the 
most dominant oscillations in the network are those of isolated F i .  For 
small g, the excitation of the Fi becomes small and 1"i no longer inhibits the 
nearest-neigbor Fj and, therefore, the most dominant oscillation becomes 
that cf  the circulation through the whole space. The frequency of the oscilla- 
tion in F; is smaller than that of the whole space because the average circula- 
tion time through the whole space is larger than that through F i .  This is the 
model of the structure generating a brain wave. Under the assumption that 
the transmission rate g becomes small when consciousness transfers from 

? ' . 

Fig. 7. Symbolic picture of the general connections generating a brain wave. Intrabody 
connections are excitatory, lntcrbody connections are inhibitory (dotted lines) and exci- 
tatory (solid lines). Inhibited bodies are indicated by shading. 

8zz/6/z/3-5 
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the awake to the sleep state, the model II explains the change of the rhythm 
from the fi rhythm to the ~ rhythm, whose frequencies are ~ 1 0  and ~ 3 - 4  Hz, 
respectively. Therefore, the general type of connection in a large-scale brain 
network is as follows: the excitatory connections are dominant locally and 
the inhibitory cell bodies link the local areas, and this is observed over a wide 
range in the brain. 

The network illustrated in Fig. 2 is useful for information retrieval 
because the circulation with the average time h- becomes dominant for large 
value of g, as shown in Fig. 5, and the signal starting from F~ calls on all the 
bodies at an average period l~- with a message, e.g., pulse-pulse correlation, 
average of first passage times, etc. 

A P P E N D I X  

We consider the case where--(1/~)  In z is equal to r independent of 
the hi'. 

Figure 2 shows the network composed of a large number of bodies 
/ ' i  (i = 1, 2,...) in which the cell bodies A and B are connected with trans- 
mission rate equal to one and transmission time equal to r/2. Further, a body 
F~ is connected to other bodies /3j ( j  = 2, 3,...) through the "transmission 
cell bodies" C1 and C2 which have transmission rates and times #z and 7 and 
(d'lg~ j-1 and ( j -  1)T/2 ( j  ~-: 2, 3,...), respectively. When the temporal 
behavior of the network is transmitted through the cell body D to the other 
regions in the brain, the time characteristics of the area including D and 
F; (i = 1, 2,...) are as analyzed in Section 4. 

The network illustrated in Fig. 3(a) is composed of two layers A and B. 
The two cell bodies of A and B facing each other are connected with trans- 
mission rate equal to one and transmission time equal to ~/2, and, further, 
there are backward the transmission rates #z2(#t2#22)J and the corresponding 
transmission times ( j  + 3 /2 ) r  ( j  = 1, 2,...). Under the supposition that 
the network is homogeneous and all the cell bodies of A are excited with the 
same period, the network is topologically equivalent to the network with the 
closed circuits (1, ~), (gl~[g12#z2], 5~-/2), (#~2[dl"&~212, %-/2) ..... as shown in 
Fig. 3(b). When the excitation of B is transmitted out through the lines 
coming from each cell body of B, the time characteristics of the network are 
as obtained in Section 4. 
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